Robot Control by Fuzzy Logic
نویسندگان
چکیده
Fuzzy set theory, originally developed by Lotfi Zadeh in the 1960’s, has become a popular tool for control applications in recent years (Zadeh, 1965). Fuzzy control has been used extensively in applications such as servomotor and process control. One of its main benefits is that it can incorporate a human being’s expert knowledge about how to control a system, without that a person need to have a mathematical description of the problem. Many robots in the literature have used fuzzy logic (Song & Tay, 1992), (Khatib, 1986), (Yan et al., 1994) etc. Computer simulations by Ishikawa feature a mobile robot that navigates using a planned path and fuzzy logic. Fuzzy logic is used to keep the robot on the path, except when the danger of collision arises. In this case, a fuzzy controller for obstacle avoidance takes over. Konolige, et al. use fuzzy control in conjunction with modeling and planning techniques to provide reactive guidance of their robot. Sonar is used by robot to construct a cellular map of its environment. Sugeno developed a fuzzy control system for a model car capable of driving inside a fenced-in track. Ultrasonic sensors mounted on a pivoting frame measured the car’s orientation and distance to the fences. Fuzzy rules were used to guide the car parallel to the fence and turn corners (Sugeno et al., 1989). The most known fuzzy models in the literature are Mamdani fuzzy model and TakagiSugeno-Kang (TSK) fuzzy model. The control strategy based on Mamdani model has the linguistic expression (Mamdani, 1981):
منابع مشابه
Trajectory Tracking of a Mobile Robot Using Fuzzy Logic Tuned by Genetic Algorithm (TECHNICAL NOTE)
In recent years, soft computing methods, like fuzzy logic and neural networks have been presented and developed for the purpose of mobile robot trajectory tracking. In this paper we will present a fuzzy approach to the problem of mobile robot path tracking for the CEDRA rescue robot with a complicated kinematical model. After designing the fuzzy tracking controller, the membership functions an...
متن کاملVariable Impedance Control for Rehabilitation Robot using Interval Type-2 Fuzzy Logic
In this study, a novel variable impedance control for a lower-limb rehabilitation robotic system using voltage control strategy is presented. The majority of existing control approaches are based on control torque strategy, which require the knowledge of robot dynamics as well as dynamic of patients. This requires the controller to overcome complex problems such as uncertainties and nonlinearit...
متن کاملDesigning an adaptive fuzzy control for robot manipulators using PSO
This paper presents designing an optimal adaptive controller for tracking control of robot manipulators based on particle swarm optimization (PSO) algorithm. PSO algorithm has been employed to optimize parameters of the controller and hence to minimize the integral square of errors (ISE) as a performance criteria. In this paper, an improved PSO using logic is proposed to increase the convergenc...
متن کاملAdaptive fuzzy sliding mode and indirect radial-basis-function neural network controller for trajectory tracking control of a car-like robot
The ever-growing use of various vehicles for transportation, on the one hand, and the statistics ofsoaring road accidents resulting from human error, on the other hand, reminds us of the necessity toconduct more extensive research on the design, manufacturing and control of driver-less intelligentvehicles. For the automatic control of an autonomous vehicle, we need its dynamic...
متن کاملCONTROL OF FLEXIBLE JOINT ROBOT MANIPULATORS BY COMPENSATING FLEXIBILITY
A flexible-joint robot manipulator is a complex system because it is nonlinear, multivariable, highly coupled along with joint flexibility and uncertainty. To overcome flexibility, several methods have been proposed based on flexible model. This paper presents a novel method for controlling flexible-joint robot manipulators. A novel control law is presented by compensating flexibility to form a...
متن کاملDynamical formation control of wheeled mobile robots based on fuzzy logic
In this paper, the important formation control problem of nonholonomic wheeled mobile robots is investigated via a leader-follower strategy. To this end, the dynamics model of the considered wheeled mobile robot is derived using Lagrange equations of motion. Then, using ADAMS multi-body simulation software, the obtained dynamics of the wheeled system in MATLAB software is verified. After that, ...
متن کامل